An optimal control problem for rigid body motions on Lie group SO(2, 1)
نویسندگان
چکیده
In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimize the integral of the square norm of Darboux vector of a timelike curve. This method uses the coordinate free Maximum Principle of Optimal control and results in the theory of integrable Hamiltonian systems. The presence of several conversed quantities inherent in these Hamiltonian systems aids in the explicit computation of the rigid body motions. Keywords—Optimal control, Hamiltonian vector field, Darboux vector, Maximum Principle, Lie group, Rigid body motion, Lorentz metric
منابع مشابه
Planning rigid body motions and optimal control problem on Lie group SO(2, 1)
In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimizes the integral of the Lorentz inner product of Darboux vecto...
متن کاملAn Optimal Control Problem for Rigid Body Motions in Minkowski Space
In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a spacelike curve in Minkowski space. In this case, the derivative of the tangent vector of the spacelike curve at a point s is taken as timelike. A method is propose...
متن کاملOptimal Attitude Control of a Rigid Body using Geometrically
An efficient and accurate computational approach is proposed for optimal attitude control of a rigid body. The problem is formulated directly as a discrete time optimization problem using a Lie group variational integrator. Discrete necessary conditions for optimality are derived, and an efficient computational approach is proposed to solve the resulting two point boundary value problem. The us...
متن کاملGeometric Structure-preserving Optimal Control of a Rigid Body
In this paper, we study a discrete variational optimal control problem for a rigid body. The cost to be minimized is the external torque applied to move the rigid body from an initial condition to a pre-specified terminal condition. Instead of discretizing the equations of motion, we use the discrete equations obtained from the discrete Lagrange–d’Alembert principle, a process that better appro...
متن کاملComputational Geometric Optimal Control of Rigid Bodies
This paper formulates optimal control problems for rigid bodies in a geometric manner and it presents computational procedures based on this geometric formulation for numerically solving these optimal control problems. The dynamics of each rigid body is viewed as evolving on a configuration manifold that is a Lie group. Discrete-time dynamics of each rigid body are developed that evolve on the ...
متن کامل